Role of stress field orientation on fault reactivation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Despite natural faults are variably oriented to the Earth's surface and to the local stress field, the mechanics of fault reactivation and slip under variable loading paths (sensu Sibson, 1993) is still poorly understood. Nonetheless, different loading pat ...
The propagation of fluid driven fractures is used in a number of industrial applications (well stimulation of unconventional reservoirs, development of deep geothermal systems) but also occurs naturally (magmatic dyke intrusion). While the mechanics of hyd ...
Hydraulic fracturing is frequently used in the oil and gas industry to increase the permeability of rocks. Its application for Enhanced Geothermal Systems still faces many challenges such as the occurrence of induced seismicity and the difficulty to collec ...
Geo-energy is a comprehensive term used to describe any form of energy that comes from the Earth. This includes hydrocarbons such as gas, oil, and coal, but also geothermal energy (shallow and deep). The focus of this thesis is on Enhanced Geothermal Syste ...
Hydraulic stimulation is an engineering technique whose aim is to enhance the permeability of fractured rock masses at depths ranging from one to five kilometers. It consists in the injection of fluid at sufficiently high pressure in order to shear pre-exi ...
Enhanced Geothermal Systems (EGS) allow for worldwide geothermal electricity production. They target deep (3-5 km), fractured rock reservoirs whose permeability is artificially increased through hydraulic stimulations (fluid injections). The injections mod ...
Faults in the brittle crust constitute preexisting weakness zones that can be reactivated depending on their friction, orientation within the local stress field, and stress field magnitude. Analytical approaches to evaluate the potential for fault reactiva ...
The process of frictional rupture, i.e., the failure of frictional systems, abounds in the technological and natural world around us, ranging from squealing car brake pads to earthquakes along geological faults. A general framework for understanding and in ...
Brittle reactivation of pre-existing faults is theoretically constrained by their friction, the stress field orientation, and magnitude. Thus, following the Mohr-Coulomb failure criterion, the increase in tectonic shear stress leads to the reactivation of ...
Hydraulic fracturing is frequently used to increase the permeability of rock formations. This can be done by creating new fractures as usually done for hydrocarbon extraction or extending and opening fractures as usually done in Enhanced Geothermal Systems ...