Crowding and the Architecture of the Visual System
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a novel system leveraging deep learning-based methods to predict urban traffic accidents and estimate their severity. The major challenge is the data imbalance problem in traffic accident prediction. The problem is caused by numerous zero values ...
In this paper we explore deep learning models to monitor longitudinal liveability changes in Dutch cities at the neighbourhood level. Our liveability reference data is defined by a country-wise yearly survey based on a set of indicators combined into a liv ...
Deep neural networks trained on physical losses are emerging as promising surrogates for nonlinear numerical solvers. These tools can predict solutions to Maxwell's equations and compute gradients of output fields with respect to the material and geometric ...
Intelligent Fault Diagnosis (IFD) based on deep learning has proven to be an effective and flexible solution, attracting extensive research. Deep neural networks can learn rich representations from vast amounts of representative labeled data for various ap ...
Touchscreens are nowadays the preferred choice for user interfaces in consumer electronics. Significant technological advances have been made in terms of touch sensing and visual quality. However, the haptic feedback offered by commercial products is still ...
The successes of deep learning for semantic segmentation can in be, in part, attributed to its scale: a notion that encapsulates the largeness of these computational architectures and the labeled datasets they are trained on. These resource requirements hi ...
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
Autoregressive Neural Networks (ARNNs) have shown exceptional results in generation tasks across image, language, and scientific domains. Despite their success, ARNN architectures often operate as black boxes without a clear connection to underlying physic ...
Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as an alternative method with a promising ...
Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as an alternative method with a promising ...