The pentraxins are a family of highly conserved plasma proteins of metazoans known to function in immune defence. The canonical members, C-reactive protein and serum amyloid P component, have been identified in arthropods and humans. Mammalian pentraxins are known to bind lipid bilayers, and a pentraxin representative from the American horseshoe crab, Limulus polyphemus, binds and permeabilizes mammalian erythrocytes. Both activities are Ca2+-dependent. Utilizing model liposomes and planar lipid bilayers, in the present study we have investigated the m ernbrane-active properties of the three pentraxin representatives from Limulus and show that all of the Limulus pentraxins permeabilize lipid bilayers. Mechanistically, Linudils C-reactive protein forms transmembrane pores in asymmetric planar lipid bilayers that mimic the outer membrane of Gram-negative bacteria and exhibits a Ca2+-independent form of membrane binding that may be sufficient for pore formation.
Francesco Stellacci, Paulo Henrique Jacob Silva, Xufeng Xu, Camilla Servidio