Applications of Atomic Scale Scanning Transmission Electron Microscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Interferometric scattering (iSCAT) microscopy enables the label-free observation of biomolecules. Consequently, single-particle imaging and tracking with the iSCAT-based method known as mass photometry (MP) is a growing area of study. However, establishing ...
Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Optical microscopy, an invaluable tool in biology and medicine to observe and quantify cellular function, organ development, or disease mechanisms, requires constant trade-offs between spatial, temporal, and spectral resolution, invasiveness, acquisition t ...
Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with high-resolution ...
Light microscopy is a tool of paramount importance for biologists and has been constantly improved for the past four centuries. Despite many recent developments, microscopy techniques still require improvement, especially to reach better temporal and spect ...
Optical microscopy is one widely used tool to study cell functions and the interaction of molecules at a sub-cellular level. Optical microscopy techniques can be broadly divided into two categories: partially coherent and incoherent. Coherent microscopy te ...
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescenc ...
We discuss the properties of signal strength and integrated intensity in two-photon excitation confocal microscopy and image scanning microscopy. The resolution, optical sectioning and background rejection are all improved over nonconfocal two-photon micro ...
Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocy ...
Fluorescence microscopy methods have been developed to circumvent the diffraction limit by exploiting nonlinearities in the interactions between light and fluorophores. Initially, these methods were up to orders of magnitude slower than standard microscopi ...