Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used ...
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to -zy-gotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and de-regulates the timing and outcome of em ...
The Segmentation clock is a population of cellular genetic oscillators, located in the posterior of the elongating vertebrate embryo, that governs the rhythmic and sequential segmentation of the body axis into somites. Somites are blocks of cells that give ...
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly genera ...
The Notch signaling pathway is a key regulator of cell fate decisions in embryonic development and in adult tissue homeostasis. Mounting evidence suggests that Notch signaling is frequently deregulated in human neoplasms, where depending upon the cellular ...
Understanding how biological matter takes its shape is instrumental to biology, bioengineering, medicine, and bioinspired engineering. Gaining information on the principles of morphogenesis could enable clinicians to correct developmental abnormalities, ev ...
In vertebrate embryos, the elongating body axis is patterned via the sequential and rhyth-mic production of segments from a posterior unsegmented tissue called the presomitic mesoderm (PSM). This process is controlled by a population of cellular oscillator ...
An important step in understanding biological rhythms is the control of period. A multicellular, rhythmic patterning system termed the segmentation clock is thought to govern the sequential production of the vertebrate embryo's body segments, the somites. ...
Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cel ...
During embryonic development, fields of progenitor cells form complex structures through dynamic interactions with external signaling molecules. How complex signaling inputs are integrated to yield appropriate gene expression responses is poorly understood ...