Statistical hypothesis testingA statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see .
Exact testIn statistics, an exact (significance) test is a test such that if the null hypothesis is true, then all assumptions made during the derivation of the distribution of the test statistic are met. Using an exact test provides a significance test that maintains the type I error rate of the test () at the desired significance level of the test. For example, an exact test at a significance level of , when repeated over many samples where the null hypothesis is true, will reject at most of the time.
AnyonIn physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons (detected by two experiments in 2020) play a major role in the fractional quantum Hall effect.
Binomial testIn statistics, the binomial test is an exact test of the statistical significance of deviations from a theoretically expected distribution of observations into two categories using sample data. The binomial test is useful to test hypotheses about the probability () of success: where is a user-defined value between 0 and 1. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value: If the null hypothesis were correct, then the expected number of successes would be .