Exotic hadronExotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral.
GlueballIn particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.
Gluon field strength tensorIn theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum field theory (QFT) to describe it is called quantum chromodynamics (QCD). Quarks interact with each other by the strong force due to their color charge, mediated by gluons. Gluons themselves possess color charge and can mutually interact.
Virtual black holeIn quantum gravity, a virtual black hole is a hypothetical micro black hole that exists temporarily as a result of a quantum fluctuation of spacetime. It is an example of quantum foam and is the gravitational analog of the virtual electron–positron pairs found in quantum electrodynamics. Theoretical arguments suggest that virtual black holes should have mass on the order of the Planck mass, lifetime around the Planck time, and occur with a number density of approximately one per Planck volume.
Mass in general relativityThe concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined. The reason for this subtlety is that the energy and momentum in the gravitational field cannot be unambiguously localized.
Black Holes and Time WarpsBlack Holes & Time Warps: Einstein's Outrageous Legacy is a 1994 popular science book by physicist Kip Thorne. It provides an illustrated overview of the history and development of black hole theory, from its roots in Newtonian mechanics until the early 1990s. Over fourteen chapters, Thorne proceeds roughly chronologically, tracing first the crisis in Newtonian physics precipitated by the Michelson–Morley experiment, and the subsequent development of Einstein's theory of special relativity (given mathematical rigor in the form of Minkowski space), and later Einstein's incorporation of gravity into the framework of general relativity.