Charged particleIn physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.
Charm quarkThe charm quark, charmed quark, or c quark is an elementary particle of the second generation. It is the third-most massive quark, with a mass of 1.27GeV/c2 (as measured in 2022) and a charge of +2/3 e. It carries charm, a quantum number. Charm quarks are found in various hadrons, such as the J/psi meson and the charmed baryons. There are also several bosons, including the W and Z bosons and the Higgs boson, that can decay into charm quarks.
NucleonIn physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were thought to be elementary particles, not made up of smaller parts. Now they are known to be composite particles, made of three quarks bound together by the strong interaction. The interaction between two or more nucleons is called internucleon interaction or nuclear force, which is also ultimately caused by the strong interaction.
Lambda baryonThe lambda baryons (Λ) are a family of subatomic hadron particles containing one up quark, one down quark, and a third quark from a higher flavour generation, in a combination where the quantum wave function changes sign upon the flavour of any two quarks being swapped (thus slightly different from a neutral sigma baryon, _Sigma0). They are thus baryons, with total isospin of 0, and have either neutral electric charge or the elementary charge +1. The lambda baryon _Lambda0 was first discovered in October 1950, by V.
Up quarkThe up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2MeV/c2. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions.
Subatomic particleIn physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a proton, neutron, or meson), or an elementary particle, which is not composed of other particles (for example, an electron, photon, or muon). Particle physics and nuclear physics study these particles and how they interact.
Current quarkCurrent quarks (also called naked quarks or bare quarks) are a description of valence quarks as the cores of the quark particles that are the invariable parts of a hadron, with their non-virtual ("real" or permanent) quarks with their surrounding "covering" of evanescent gluons and virtual quarks imagined stripped away. In quantum chromodynamics, the mass of the current quarks is called the current quark mass, as opposed to the much larger mass of the composite particle which is carried in the gluon and virtual quark covering.
Alpha particleAlpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 42He2+ indicating a helium ion with a +2 charge (missing its two electrons).
Nuclear forceThe nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electromagnetic force. The nuclear force binds nucleons into atomic nuclei.
Nuclear drip lineThe nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron. An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up or to the right across the table of nuclides by adding a proton or a neutron, respectively, to a given nucleus. However, adding nucleons one at a time to a given nucleus will eventually lead to a newly formed nucleus that immediately decays by emitting a proton (or neutron).