Scalar bosonA scalar boson is a boson whose spin equals zero. A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin. Scalar bosons are the subset of bosons with zero-valued spin. The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).
LeptonIn particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.
Quark–gluon plasmaQuark–gluon plasma (or QGP and quark soup) is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter.
AnnihilationIn particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy and momentum of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of such an original pair are zero.
TopnessTopness (T, also called truth), a flavour quantum number, represents the difference between the number of top quarks (t) and number of top antiquarks () that are present in a particle: By convention, top quarks have a topness of +1 and top antiquarks have a topness of −1. The term "topness" is rarely used; most physicists simply refer to "the number of top quarks" and "the number of top antiquarks". Like all flavour quantum numbers, topness is preserved under strong and electromagnetic interactions, but not under weak interaction.
BaryogenesisIn physical cosmology, baryogenesis (also known as baryosynthesis) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter (baryons) and antimatter (antibaryons) in the observed universe. One of the outstanding problems in modern physics is the predominance of matter over antimatter in the universe. The universe, as a whole, seems to have a nonzero positive baryon number density.
Higgs mechanismIn the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model.
Xi baryonThe Xi baryons or cascade particles are a family of subatomic hadron particles which have the symbol Ξ and may have an electric charge (Q) of +2 e, +1 e, 0, or −1 e, where e is the elementary charge. Like all conventional baryons, Ξ particles contain three quarks. Ξ baryons, in particular, contain either one up or one down quark and two other, more massive quarks. The two more massive quarks are any two of strange, charm, or bottom (doubles allowed).
Gauss's continued fractionIn complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions. Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813.
Generalized continued fractionIn complex analysis, a branch of mathematics, a generalized continued fraction is a generalization of regular continued fractions in canonical form, in which the partial numerators and partial denominators can assume arbitrary complex values. A generalized continued fraction is an expression of the form where the an (n > 0) are the partial numerators, the bn are the partial denominators, and the leading term b0 is called the integer part of the continued fraction.