Implicit discourse relation classification with syntax-aware contextualized word representations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Scene parsing is a technique that consist on giving a label to all pixels in an image according to the class they belong to. To ensure a good visual coherence and a high class accuracy, it is essential for a scene parser to capture image long range depende ...
Word embeddings resulting from neural language models have been shown to be a great asset for a large variety of NLP tasks. However, such architecture might be difficult and time-consuming to train. Instead, we propose to drastically simplify the word embe ...
We propose a recurrent neural-network for real-time reconstruction of acoustic camera spherical maps. The network, dubbed DeepWave, is both physically and algorithmically motivated: its recurrent architecture mimics iterative solvers from convex optimisati ...
A Language Model (LM) is a helpful component of a variety of Natural Language Processing (NLP) systems today. For speech recognition, machine translation, information retrieval, word sense disambiguation etc., the contribution of an LM is to provide featur ...
We first present our work in machine translation, during which we used aligned sentences to train a neural network to embed n-grams of different languages into an d-dimensional space, such that n-grams that are the translation of each other are close with ...
Word embeddings resulting from neural language models have been shown to be successful for a large variety of NLP tasks. However, such architecture might be difficult to train and time-consuming. Instead, we propose to drastically sim- plify the word embed ...