Publication

Improving dual-arm assembly by master-slave compliance

Sylvain Calinon, Emmanuel Pignat
2019
Conference paper
Abstract

In this paper we show how different choices regarding compliance affect a dual-arm assembly task. In addition, we present how the compliance parameters can be learned from a human demonstration. Compliant motions can be used in assembly tasks to mitigate pose errors originating from, for example, inaccurate grasping. We present analytical background and accompanying experimental results on how to choose the center of compliance to enhance the convergence region of an alignment task. Then we present the possible ways of choosing the compliant axes for accomplishing alignment in a scenario where orientation error is present. We show that an earlier presented Learning from Demonstration method can be used to learn motion and compliance parameters of an impedance controller for both manipulators. The learning requires a human demonstration with a single teleoperated manipulator only, easing the execution of demonstration and enabling usage of manipulators at difficult locations as well. Finally, we experimentally verify our claim that having both manipulators compliant in both rotation and translation can accomplish the alignment task with less total joint motions and in shorter time than moving one manipulator only. In addition, we show that the learning method produces the parameters that achieve the best results in our experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Machine learning
Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
Learning
Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event (e.g. being burned by a hot stove), but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved.
AI alignment
In the field of artificial intelligence (AI), AI alignment research aims to steer AI systems towards humans' intended goals, preferences, or ethical principles. An AI system is considered aligned if it advances the intended objectives. A misaligned AI system pursues some objectives, but not the intended ones. It can be challenging for AI designers to align an AI system because it can be difficult for them to specify the full range of desired and undesired behaviors.
Show more
Related publications (38)

Breaking the Curse of Dimensionality in Deep Neural Networks by Learning Invariant Representations

Leonardo Petrini

Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
EPFL2023

Learning From Heterogeneous Data Based on Social Interactions Over Graphs

Ali H. Sayed, Stefan Vlaski, Virginia Bordignon

This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions and arising from possibly different distributions. In the context of social learning ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Planned, taught, learnt: analysis of transversal skills through curriculum using portfolio

Helena Kovacs, Alexandra Corina Niculescu, Tamara Milosevic

There is an everlasting effort in education to successfully ensure that the intended learning objectives are clearly taught and effectively learnt at the end of the educational cycle. This has been especially difficult in teaching and learning complex sets ...
TU Dublin2023
Show more
Related MOOCs (25)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.