Function objectIn computer programming, a function object is a construct allowing an object to be invoked or called as if it were an ordinary function, usually with the same syntax (a function parameter that can also be a function). In some languages, particularly C++, function objects are often called functors (not related to the functional programming concept). A typical use of a function object is in writing callback functions. A callback in procedural languages, such as C, may be performed by using function pointers.
Software requirementsSoftware requirements for a system are the description of what the system should do, the service or services that it provides and the constraints on its operation. The IEEE Standard Glossary of Software Engineering Terminology defines a requirement as: A condition or capability needed by a user to solve a problem or achieve an objective. A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed document.
X86 instruction listingsThe x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a and executed on the processor. The x86 instruction set has been extended several times, introducing wider registers and datatypes as well as new functionality. x86 assembly language Below is the full 8086/8088 instruction set of Intel (81 instructions total). Most if not all of these instructions are available in 32-bit mode; they just operate on 32-bit registers (eax, ebx, etc.
General protection faultA general protection fault (GPF) in the x86 instruction set architectures (ISAs) is a fault (a type of interrupt) initiated by ISA-defined protection mechanisms in response to an access violation caused by some running code, either in the kernel or a user program. The mechanism is first described in Intel manuals and datasheets for the Intel 80286 CPU, which was introduced in 1983; it is also described in section 9.8.13 in the Intel 80386 programmer's reference manual from 1986.
Information hidingIn computer science, information hiding is the principle of segregation of the design decisions in a computer program that are most likely to change, thus protecting other parts of the program from extensive modification if the design decision is changed. The protection involves providing a stable interface which protects the remainder of the program from the implementation (whose details are likely to change).
Virtual 8086 modeIn the 80386 microprocessor and later, virtual 8086 mode (also called virtual real mode, V86-mode, or VM86) allows the execution of real mode applications that are incapable of running directly in protected mode while the processor is running a protected mode operating system. It is a hardware virtualization technique that allowed multiple 8086 processors to be emulated by the 386 chip. It emerged from the painful experiences with the 80286 protected mode, which by itself was not suitable to run concurrent real-mode applications well.
Metadata registryA metadata registry is a central location in an organization where metadata definitions are stored and maintained in a controlled method. A metadata repository is the database where metadata is stored. The registry also adds relationships with related metadata types. A metadata engine collects, stores and analyzes information about data and metadata (data about data) in use within a domain. Metadata registries are used whenever data must be used consistently within an organization or group of organizations.
Register allocationIn compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (local register allocation), over a whole function/procedure (global register allocation), or across function boundaries traversed via call-graph (interprocedural register allocation). When done per function/procedure the calling convention may require insertion of save/restore around each call-site.
Memory safetyMemory safety is the state of being protected from various software bugs and security vulnerabilities when dealing with memory access, such as buffer overflows and dangling pointers. For example, Java is said to be memory-safe because its runtime error detection checks array bounds and pointer dereferences. In contrast, C and C++ allow arbitrary pointer arithmetic with pointers implemented as direct memory addresses with no provision for bounds checking, and thus are potentially memory-unsafe.
Virtual method tableIn computer programming, a virtual method table (VMT), virtual function table, virtual call table, dispatch table, vtable, or vftable is a mechanism used in a programming language to support dynamic dispatch (or run-time method binding). Whenever a class defines a virtual function (or method), most compilers add a hidden member variable to the class that points to an array of pointers to (virtual) functions called the virtual method table.