MATHICSE Technical Report: Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new multiscale method combined with model order reduction is proposed for flow problems in three-scale porous media. We derive an effective three-scale model that couples a macroscopic Darcy equation, a mesoscopic Stokes-Brinkman equation, and a microsco ...
In nuclear safety, most severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
Many applied problems, like transport processes in porous media or ferromagnetism in composite materials, can be modeled by partial differential equations (PDEs) with heterogeneous coefficients that rapidly vary at small scales. To capture the effective be ...
We introduce a numerical homogenization method based on a discontinuous Galerkin finite element heterogeneous multiscale method (DG-HMM) to efficiently approximate the effective solution of parabolic advection-diffusion problems with rapidly varying coeffi ...
Annular cascades are particularly useful to study the three dimensional phenomena encountered in turbomachines. The Non-Rotating Annular Test Facility of the Swiss Federal Institute of Technology in Lausanne (EPFL) consists in a radial-axial inlet nozzle a ...
An adaptive finite element algorithm to compute transonic viscous flows around a wing is presented. The adaptive criteria is based on an anisotropic error estimator in the 115 semi-norm, justified for an advection-diffusion problem with stabilized finite e ...
The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is ...
International Association For Hydraulic Research2014
A new numerical method is proposed to study two-phase flow and heat transfer for interlayer cooling of the new generation of multi-stacked computer chips. The fluid flow equations are developed in 3-dimensions based on the Arbitrary Lagrangian-Eulerian for ...
Insect flight is characterised by complex time-dependent flows in response to the unsteady wing movements. Biological fliers exploit the unsteady flow fields to modulate aerodynamic forces, thereby displaying unmatched flight performance, especially in hov ...