**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Rapid 3-D Magnetic Integral Field Computation of Current-Carrying Finite Arc Segments With Rectangular Cross Section

Abstract

The computation of 3-D magnetic fields is a demanding task in the analysis of electrical machines and other electromagnetic devices. In this context, integral field calculation provides a smooth solution, high precision and resolution, "on-demand"-calculation, and an origin-based formulation of the magnetic field and the magnetic vector potential. However, conventional elliptic methods lead to huge parallelizable computing efforts and significant errors. In this article, a 3-D generic current-carrying arc segment with rectangular cross section is studied. A new analytic formulation is proposed to speed up the computation of magnetic fields and reduce the error by more than three orders of magnitude. In addition, the proposed magnetic vector potential expression has a similar accuracy as numerical integration. In fact, a significant reduction of the error level has been showcased clearly with respect to the existing approaches. This article is promising for improving the design methodology and optimization of large superconducting dipole magnets or arched end-winding geometries of large electrical machines.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (3)

Magnetic field

A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.

Magnetic vector potential

In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

Electric machine

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating (rotating machines) or linear (linear machines).