Publication

Spatially Resolved Production of Platinum Nanoparticles in Metallosupramolecular Polymers

Abstract

Nanocomposites consisting of a polymer matrix and metallic nanoparticles can merge the functional, structural, and mechanical properties of the two components and are useful for applications that range from catalysis to soft electronics. Gaining spatial control over the nanoparticle incorporation is useful, for example to confine catalytic sites or create electrically conducting pathways. Here, we show that this is possible by the controlled disassembly of a metal-losupramolecular polymer containing zerovalent platinum complexes to form nanoparticles in situ. To achieve this, a telechelic poly(ethylene-co-butylene). was end-functionalized with diphenylacetylene ligands and chain -extended through the formation of bis(eta 2-alkyne)Pt-0 complexes. These complexes are stable at ambient conditions, but they can be dissociated upon heating or exposure to ultraviolet light, which allows producing Pt nanoparticles when and where needed and without auxiliary reagents or formation of byproducts. This approach was exploited to create objects with well-defined catalytically active areas.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Platinum nanoparticle
Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium (liquid or gas). Spherical platinum nanoparticles can be made with sizes between about 2 and 100 nanometres (nm), depending on reaction conditions. Platinum nanoparticles are suspended in the colloidal solution of brownish-red or black color. Nanoparticles come in wide variety of shapes including spheres, rods, cubes, and tetrahedra.
Nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
Silver nanoparticle
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common. Their extremely large surface area permits the coordination of a vast number of ligands.
Show more
Related publications (44)

An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass

Lioubov Kiwi

Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine an ...
Basel2023

Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles

Francesco Stellacci, Lixia Wei, Arthur Eliot Bouchez, Suiyang Liao

Most nanoparticles' parameters affect their interactions with cells. To date, all the parameters studied are basically static (e.g., size, shape, ligands, and charge). This is unfortunate, because proteins have struc-tural dynamics that most nanoparticles ...
CELL PRESS2023

Active sites on copper-based catalysts for electrochemical CO2 reduction selectively to C2+ products

Jie Zhang

Electrochemical CO2 reduction (eCO2RR) towards value-added chemicals, powered by renewable electricity, is a promising technology for storing the intermittent renewable energy in the form of chemical bonds. Among the various products of eCO2RR, multi-carbo ...
EPFL2022
Show more