Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The present study deals with the shedding process of the Kármán vortices at the trailing edge of a 2D hydrofoil at high Reynolds numbers. Investigations are performed in order to evaluate the ability of an unsteady numerical simulation to accurately reprod ...
The subject of this thesis is the numerical simulation of viscous free-surface flows in naval engineering applications. State-of-the-art numerical methods based on the solution of the Navier-Stokes equations are used to predict the flow around different cl ...
The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics p ...
A numerical method for the simulation of the motion of a glacier in two and three dimensions is presented. Glacier ice is treated as an incompressible viscous fluid. The model equations are based on mass, momentum, energy conservation and a specific rheolo ...
This paper presents a review of the mathematical models which can be adopted to describe the different physical phenomena characterizing the flow around a sailing yacht. The complete model accounting for laminar-turbulent transition regime, free-surface dy ...
In the present study, we have carried out an experimental investigation on the fluid-structure interaction caused by Karman vortices in the wake of a truncated 2D hydrofoil. The instrumentation involves a high frequency accelerometer and high speed visuali ...
Cavitation is usually the main physical phenomenon behind performance alterations in hydraulic machinery. For this reason, it is crucial to accurately predict its inception and development and to highlight a comprehensive relation between the cavitation de ...
The application of Computational Fluid Dynamics simulations based on the Reynolds Averaged Navier- Stokes (RANS) equations to the design of sailing yachts is becoming more commonplace, particularly for the America's Cup. Drawing on the experience of the Ec ...
The dynamics of the rotating vortex taking place in the discharge ring of a Francis turbine for partial flow rate operating conditions and cavitation free conditions is studied by carrying out both experimental flow survey and numerical simulations. 2D las ...