Publication

Demonstration of Tunable Optical Aggregation of QPSK to 16-QAM Over Optically Generated Nyquist Pulse Trains Using Nonlinear Wave Mixing and a Kerr Frequency Comb

Abstract

A tunable and reconfigurable optical aggregation system is experimentally demonstrated. Optical Nyquist pulses are generated on multiple channels using a microresonator-based Kerr optical frequency comb and insertion of uniform lines by an intensity modulator. Data are modulated on optically generated Nyquist pulses and aggregated through nonlinear wave mixing in a periodically poled lithium niobate (PPLN) waveguide. Two quadrature-phase-shift-keying (QPSK) channels are aggregated to a single 16-quadrature amplitude modulation (16-QAM) channel of Nyquist pulses. To demonstrate the system tunability, we perform aggregation over different baud rates and different modulation formats. The reconfigurability of the system is demonstrated by aggregating two binary-phase-shift-keying (BPSK) channels into a QPSK or a 2-level amplitude-shift keying and a 2-level phase-shift keying (2-ASK & x002F;2-PSK) channel by tuning the relative phase and amplitude of the inputs. Furthermore, three BPSK channels are aggregated into one 4-ASK & x002F;2-PSK channel. The quality of the aggregated channel is investigated using two different approaches for wave mixing in the PPLN waveguide.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Phase-shift keying
Phase-shift keying (PSK) is a digital modulation process which conveys data by changing (modulating) the phase of a constant frequency carrier wave. The modulation is accomplished by varying the sine and cosine inputs at a precise time. It is widely used for wireless LANs, RFID and Bluetooth communication. Any digital modulation scheme uses a finite number of distinct signals to represent digital data. PSK uses a finite number of phases, each assigned a unique pattern of binary digits.
Quadrature amplitude modulation
Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme.
Frequency-shift keying
Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is encoded on a carrier signal by periodically shifting the frequency of the carrier between several discrete frequencies. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK), in which the carrier is shifted between two discrete frequencies to transmit binary (0s and 1s) information.
Show more
Related publications (80)

Computationally-Efficient Synchrophasor Estimation: Delayed In-Quadrature Interpolated DFT

Mario Paolone, Cesar Garcia Veloso

The paper proposes a synchropahsor estimation (SE) algorithm that leverages the use of a delayed in-quadrature complex signal to mitigate the self-interference of the fundamental tone. The estimator, which uses a three-point IpDFT combined with a three-cyc ...
2023

Energy-Efficient Design Techniques for High-Speed Wireline Serial Links

Firat Çelik

The exponential growth in computing power and multimedia services has caused a tremendous increase in data traffic in recent years. This increase in data traffic brings a strong demand for data bandwidth of electrical input/output (I/O) links and pushes th ...
EPFL2021

High-Speed ADC Design and Optimization for Wireline Links

Ayça Akkaya

The ever-growing global internet traffic has increased demand for higher speed data transmission. As the bandwidth requirements of wireline links increase, extensive digital equalization techniques are required to compensate for the high-frequency channel ...
EPFL2021
Show more
Related MOOCs (6)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more