Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and s ...
Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesi ...
Neurodegenerative and neuroinflammatory disorders often involve complex pathophysiological mechanisms that are â to this date â only partially understood. A more comprehensive understanding of those microstructural processes and their characterization ...
BACKGROUND AND PURPOSE: MS lesions exhibit varying degrees of axonal and myelin damage. A comprehensive description of lesion phenotypes could contribute to an improved radiologic evaluation of smoldering inflammation and remyelination processes. This stud ...
Semantic segmentation datasets often exhibit two types of imbalance: \textit{class imbalance}, where some classes appear more frequently than others and \textit{size imbalance}, where some objects occupy more pixels than others. This causes traditional eva ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
Whereas pulse-echo ultrasound imaging relied on focused acoustic waves since its inception, the last two decades have seen the development of techniques based on unfocused waves, including ultrafast ultrasound imaging. In large part due to the emergence of ...
Monitoring the cracks in walls, roads and other types of infrastructure is essential to ensure the safety of a structure, and plays an important role in structural health monitoring. Automatic visual inspection allows an efficient, costeffective and safe h ...