**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials

Abstract

One of the fundamental properties of semiconductors is their ability to support highly tunable electric currents in the presence of electric fields or carrier concentration gradients. These properties are described by transport coefficients such as electron and hole mobilities. Over the last decades, our understanding of carrier mobilities has largely been shaped by experimental investigations and empirical models. Recently, advances in electronic structure methods for real materials have made it possible to study these properties with predictive accuracy and without resorting to empirical parameters. These new developments are unlocking exciting new opportunities, from exploring carrier transport in quantum matter to in silico designing new semiconductors with tailored transport properties. In this article, we review the most recent developments in the area of ab initio calculations of carrier mobilities of semiconductors. Our aim is threefold: to make this rapidly-growing research area accessible to a broad community of condensed-matter theorists and materials scientists; to identify key challenges that need to be addressed in order to increase the predictive power of these methods; and to identify new opportunities for increasing the impact of these computational methods on the science and technology of advanced materials. The review is organized in three parts. In the first part, we offer a brief historical overview of approaches to the calculation of carrier mobilities, and we establish the conceptual framework underlying modern ab initio approaches. We summarize the Boltzmann theory of carrier transport and we discuss its scope of applicability, merits, and limitations in the broader context of many-body Green's function approaches. We discuss recent implementations of the Boltzmann formalism within the context of density functional theory and many-body perturbation theory calculations, placing an emphasis on the key computational challenges and suggested solutions. In the second part of the article, we review applications of these methods to materials of current interest, from three-dimensional semiconductors to layered and two-dimensional materials. In particular, we discuss in detail recent investigations of classic materials such as silicon, diamond, gallium arsenide, gallium nitride, gallium oxide, and lead halide perovskites as well as low-dimensional semiconductors such as graphene, silicene, phosphorene, molybdenum disulfide, and indium selenide. We also review recent efforts toward high-throughput calculations of carrier transport. In the last part, we identify important classes of materials for which an ab initio study of carrier mobilities is warranted. We discuss the extension of the methodology to study topological quantum matter and materials for spintronics and we comment on the possibility of incorporating Berry-phase effects and many-body correlations beyond the standard Boltzmann formalism.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (36)

Related MOOCs (8)

Related publications (146)

Electron mobility

In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .

Ab initio quantum chemistry methods

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants.

Gallium arsenide

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows. GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors, including indium gallium arsenide, aluminum gallium arsenide and others.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Nicola Marzari, Lorenzo Bastonero

Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...

Two-dimensional dopant layers (δ-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs ...

Alfredo Pasquarello, Stefano Falletta

Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...