Newton's method in optimizationIn calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f ′ of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article.
Heuristic (computer science)In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.
Amdahl's lawIn computer architecture, Amdahl's law (or Amdahl's argument) is a formula which gives the theoretical speedup in latency of the execution of a task at fixed workload that can be expected of a system whose resources are improved. It states that "the overall performance improvement gained by optimizing a single part of a system is limited by the fraction of time that the improved part is actually used". It is named after computer scientist Gene Amdahl, and was presented at the American Federation of Information Processing Societies (AFIPS) Spring Joint Computer Conference in 1967.
Partition of unityIn mathematics, a partition of unity of a topological space X is a set R of continuous functions from X to the unit interval [0,1] such that for every point : there is a neighbourhood of x where all but a finite number of the functions of R are 0, and the sum of all the function values at x is 1, i.e., Partitions of unity are useful because they often allow one to extend local constructions to the whole space. They are also important in the interpolation of data, in signal processing, and the theory of spline functions.