Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.
Françoise Gisou van der Goot Grunberg, Laurence Gouzi Abrami, Francisco De Magalhães Sarmento R De Mesquita
Elena Goun, Pavlo Khodakivskyi