Requirements for DNA bubble structure for efficient cleavage by helix-two-turn-helix DNA glycosylases
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Trans-lesion synthesis polymerases, like DNA Polymerase-eta (Pol-eta), are essential for cell survival. Pol-eta bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group p ...
Telomeres are the DNA/RNA/protein structures at the end of linear eukaryotic chromosomes, which protect them against the DNA damage repair machinery, preventing chromosome end-to-end fusions and aberrant recombination. Moreover, telomeres compensate for th ...
Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machine ...
American Society for Biochemistry and Molecular Biology2015
In meiotic DNA recombination, the Hop2-Mnd1 complex promotes Dmc1-mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to form a synaptic complex by a yet-unclear mechanism. Here, the crystal structure of Hop2-Mnd1 reveals that it form ...
Clinical approaches for tumor treatment often rely on combination therapy where a DNA damaging agent is used in combination with a DNA repair protein inhibitor. For this reason, great efforts have been made during the last decade to identify inhibitors of ...
Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show th ...
Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescenc ...
Typically, immune responses control the pathogen, while repair and stress pathways limit damage caused by pathogenesis. The relative contribution of damage to the outcome of pathogenesis and the mechanistic links between the immune and repair pathways are ...
The formation of crossovers is a fundamental genetic process. The XPF-family endonuclease Mus81-Mms4 (Eme1) contributes significantly to crossing over in eukaryotes. A key question is whether Mus81-Mms4 can process Holliday junctions that contain four unin ...
In both eukaryotic and prokaryotic DNA sequences of 30-100 base-pairs rich in AT base-pairs have been identified at which the double helix preferentially unwinds. Such DNA unwinding elements are commonly associated with origins for DNA replication and tran ...