The modern analogue of a Cretaceous coral with a calcitic skeleton
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The rapid accumulation of whole-genome data has renewed interest in the study of genomic rearrangements. Comparative genomics, evolutionary biology, and cancer research all require models and algorithms to elucidate the mechanisms, history, and consequence ...
Calcite isocrinid ossicles from the Middle Jurassic (Bathonian) clays in Gnaszyn (central Poland) show perfectly preserved micro- and nanostructural details typical of diagenctically unaltered echinoderm skeleton. Stereom pores are filled with ferroan calc ...
Conventional soil improvement techniques can lead to permanent soil pollution or emission of carbon dioxide. It is therefore a challenge for engineers to design alternative sustainable and cost-effective grouting techniques. In Microbial Induced Calcite Pr ...
Uptake of anthropogenic CO2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state (Omega(arag)) The objectives of this long-term study ...
Distributions of Mg and Sr in the skeletons of a deep-sea coral (Caryophyllia ambrosia) and a shallow-water, reef-building coral (Pavona clavus) have been obtained with a spatial resolution of 150 nm, using the NanoSIMS ion microprobe at the Museum Nationa ...
This paper presents the results of an effort to label calcium carbonates formed by marine organisms with stable isotopes to obtain information about the biomineralization processes. The growing skeleton of the scleractinian coral Porites porites was labele ...
It has been generally thought that scleractinian corals form purely aragonitic skeletons. We show that a well-preserved fossil coral, Coelosmilia sp. from the Upper Cretaceous (about 70 million years ago), has preserved skeletal structural features identic ...
[1] We present analyses of major elements C and Ca and trace elements N, S, Mg and Sr in a Porites sp. exoskeleton with a spatial resolution better than similar to 150 nm. Trace element variations are evaluated directly against the ultrastructure of the sk ...
Ion micro-probe imaging of the aragonite skeleton of Pavona clavus, a massive reef-building coral, shows that magnesium and strontium are distributed very differently. In contrast to strontium, the distribution of magnesium is strongly correlated with the ...