Publication

Transition from Exponentially Damped to Finite-Time Arrest Liquid Oscillations Induced by Contact Line Hysteresis

Abstract

To clarify the role of wetting properties on the damping of liquid oscillations, we studied the decay of oscillations of liquid columns in a U-shaped tube with controlled surface conditions. In the presence of sliding triple lines, oscillations are strongly and nonlinearly damped, with a finite-time arrest and a dependence on initial amplitude. We reveal that contact angle hysteresis explains and quantifies this solidlike friction.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.