On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
This paper is concerned with two improved variants of the Hutch++ algorithm for estimating the trace of a square matrix, implicitly given through matrix-vector products. Hutch++ combines randomized low-rank approximation in a first phase with stochastic tr ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix of inne ...
In this thesis we propose and analyze algorithms for some numerical linear algebra tasks: finding low-rank approximations of matrices, computing matrix functions, and estimating the trace of matrices.In the first part, we consider algorithms for building l ...
The problem of finding a k×k submatrix of maximum volume of a matrix A is of interest in a variety of applications. For example, it yields a quasi-best low-rank approximation constructed from the rows and columns of A. We show that such a submatrix ...
MATHICSE2019
,
Randomized trace estimation is a popular and well-studied technique that approximates the trace of a large-scale matrix B by computing the average of x(T) Bx for many samples of a random vector X. Often, B is symmetric positive definite (SPD) but a number ...
2021
,
The Schur decomposition of a square matrix A is an important intermediate step of state-of-the-art numerical algorithms for addressing eigenvalue problems, matrix functions, and matrix equations. This work is concerned with the following task: Compute a (m ...
SPRINGER2022
,
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
SIAM PUBLICATIONS2020
We consider large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of the skew-shift (2j)ω+jy+xmod1 for irrational ω. We prove that the eigenvalue distribution of these matrices conv ...