Quadruplet Selection Methods For Deep Embedding Learning
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Earth scientists study a variety of problems with remote sensing data, but they most often consider them in isolation from each other, which limits information flows across disciplines. In this work, we present METEOR, a meta-learning methodology for Earth ...
Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they often un ...
Recent developments in neural architecture search (NAS) emphasize the significance of considering robust architectures against malicious data. However, there is a notable absence of benchmark evaluations and theoretical guarantees for searching these robus ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...
This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In ...