Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing att ...
Can we understand the interspike interval (ISI) statistics of spontaneous neural activity? What is the relation between input and output statistics of a neuron? --> Important for understanding population activity. Most theoretical studies assume that neuro ...
What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields ...
Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation and paired re ...
Cortical neurons continuously transform sets of incoming spike trains into output spike trains. This input-output transformation is referred to as single-neuron computation and constitutes one of the most fundamental process in the brain. A deep understand ...
Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections ...
The cortex must maintain balanced levels of neural activity to correctly integrate inputs and to provide contextually meaningful outputs. Neuronal excitation is counterbalanced by various forms of inhibition such as spike frequency adaptation, short- and l ...
Firing rate variability at the single neuron level is characterized by long-memory processes and complex statistics over a wide range of time scales (from milliseconds up to several hours). Here, we focus on the contribution of non-stationary efficacy of t ...
A complete single-neuron model must correctly reproduce the firing of spikes and bursts. We present a study of a simplified model of deep pyramidal cells of the cortex with active dendrites. We hypothesized that we can model the soma and its apical dendrit ...