**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Change of beam distribution due to decoherence in the presence of transverse feedback

Abstract

The effect of Landau damping is often calculated based on a Gaussian beam distribution in all degrees of freedom. The stability of the beam is however strongly dependent on the details of the distribution. The present study focuses on the change of bunch distributions caused by the decoherence of the excitation driven by an external source of noise, in the presence of both amplitude detuning and a transverse feedback. Both multiparticle tracking simulations and theoretical models show a similar change of the distribution. The possible loss of Landau damping driven by this change is discussed.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (7)

Related concepts (33)

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Normal distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

Cauchy distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

F-distribution

In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests. The F-distribution with d1 and d2 degrees of freedom is the distribution of where and are independent random variables with chi-square distributions with respective degrees of freedom and .

Related publications (165)

Our dataset consists of very high-resolution aerial images (50cm) and a digital elevation model (50cm) that covers approx. 2300 km2 of land above 2000m altitude in the southwestern part of Switzerland. Our land cover labels focus on alpine land cover that ...

Sabine Süsstrunk, Radhakrishna Achanta, Mahmut Sami Arpa, Martin Nicolas Everaert, Athanasios Fitsios

There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...

2024Jean-François Molinari, Sacha Zenon Wattel

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, w ...

2024