Computational design of anti-CRISPR proteins with improved inhibition potency
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Infections caused by multidrug-resistant (MDR) bacteria pose an impending threat to humanity, as the evolution of MDR bacteria outpaces the development of effective antibiotics. In this work, we use indium phosphide (InP) quantum dots (QDs) to treat infect ...
ROYAL SOC CHEMISTRY2022
DNA-binding proteins physically interact with the DNA and directly affect genomic functions. The eukaryotic genome is compacted into chromatin, limiting the DNA access to nuclear factors. In this Ph.D. thesis, I explored the dynamic mechanisms, that allow ...
EPFL2023
,
Background: The discovery of the CRISPR-Cas9-based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed ...
JMIR PUBLICATIONS, INC2020
The zein solutions containing different concentrations of cuminaldehyde (5%, 10%, and 20%, w/w) were electrospun. The morphology and average diameter of fibers were evaluated by scanning electron microscopy and the optimized fiber (20% cuminaldehyde) was c ...
ELSEVIER2021
This work's objective was to develop a novel type of gliadin electrospun fiber with antibacterial properties by incorporating cuminaldehyde in the fibrous structure. Gliadin fibers containing various concentrations of cuminaldehyde were fabricated via an e ...
2021
, ,
Optogenetic control of CRISPR-Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and en ...
2021
, , , ,
The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering ...
Many challenges are faced in the conversion of biomass into advanced biofuels, one of which is finding the correct organism for the job. The filamentous fungus Aspergillus niger has been chosen as a biocatalyst for cellulose, hemicellulose, and lignin degr ...
Background The advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology marked the beginning of a new era in the field of molecular biology, allowing the efficient and precise creation of targeted mutations in the ge ...
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degrad ...