Supermassive black holeA supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, not even light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center.
Big BangThe Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure.
AchernarAchernar is the brightest star in the constellation of Eridanus, and the ninth-brightest in the night sky. It has the Bayer designation Alpha Eridani, which is Latinized from α Eridani and abbreviated Alpha Eri or α Eri. The name Achernar applies to the primary component of a binary system. The two components are designated Alpha Eridani A (the primary) and B (the secondary), with the latter known informally as Achernar B. As determined by the Hipparcos astrometry satellite, this system is located at a distance of approximately from the Sun.
Bi-elliptic transferIn astronautics and aerospace engineering, the bi-elliptic transfer is an orbital maneuver that moves a spacecraft from one orbit to another and may, in certain situations, require less delta-v than a Hohmann transfer maneuver. The bi-elliptic transfer consists of two half-elliptic orbits. From the initial orbit, a first burn expends delta-v to boost the spacecraft into the first transfer orbit with an apoapsis at some point away from the central body.
Hohmann transfer orbitIn astronautics, the Hohmann transfer orbit (ˈhoʊmən) is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. Examples would be used for travel between low Earth orbit and the Moon, or another solar planet or asteroid. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits.
Specific orbital energyIn the gravitational two-body problem, the specific orbital energy (or vis-viva energy) of two orbiting bodies is the constant sum of their mutual potential energy () and their total kinetic energy (), divided by the reduced mass. According to the orbital energy conservation equation (also referred to as vis-viva equation), it does not vary with time: where is the relative orbital speed; is the orbital distance between the bodies; is the sum of the standard gravitational parameters of the bodies; is the specific relative angular momentum in the sense of relative angular momentum divided by the reduced mass; is the orbital eccentricity; is the semi-major axis.
Thirty Meter TelescopeThe Thirty Meter Telescope (TMT) is a planned extremely large telescope (ELT) that has become controversial due to its location on Mauna Kea, on the island of Hawaiʻi. The TMT would become the largest visible-light telescope on Mauna Kea. Scientists have been considering ELTs since the mid 1980s. In 2000, astronomers considered the possibility of a telescope with a light-gathering mirror larger than 20 meters (65') in diameter, using either small segments that create one large mirror, or a grouping of larger 8-meter (26') mirrors working as one unit.
Characteristic energyIn astrodynamics, the characteristic energy () is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length2 time−2, i.e. velocity squared, or energy per mass. Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: where is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center.