Characteristic (algebra)In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, char(R) is the smallest positive number n such that: if such a number n exists, and 0 otherwise.
Algebraic number fieldIn mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Homogeneous spaceIn mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts transitively. The elements of G are called the symmetries of X.
C*-algebraIn mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties: A is a topologically closed set in the norm topology of operators. A is closed under the operation of taking adjoints of operators.
Principal homogeneous spaceIn mathematics, a principal homogeneous space, or torsor, for a group G is a homogeneous space X for G in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group G is a non-empty set X on which G acts freely and transitively (meaning that, for any x, y in X, there exists a unique g in G such that x·g = y, where · denotes the (right) action of G on X).
Richard BrauerRichard Dagobert Brauer (February 10, 1901 – April 17, 1977) was a leading German and American mathematician. He worked mainly in abstract algebra, but made important contributions to number theory. He was the founder of modular representation theory. Alfred Brauer was Richard's brother and seven years older. They were born to a Jewish family. Both were interested in science and mathematics, but Alfred was injured in combat in World War I. As a boy, Richard dreamt of becoming an inventor, and in February 1919 enrolled in Technische Hochschule Berlin-Charlottenburg.
Characteristic classIn mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.
Global fieldIn mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: Algebraic number field: A finite extension of Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of , the field of rational functions in one variable over the finite field with elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s.
Maximal torusIn the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group G is a compact, connected, abelian Lie subgroup of G (and therefore isomorphic to the standard torus Tn). A maximal torus is one which is maximal among such subgroups. That is, T is a maximal torus if for any torus T′ containing T we have T = T′. Every torus is contained in a maximal torus simply by dimensional considerations.
Hilbert class fieldIn algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K. In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K.