Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
The magnetic moment of rare earth elements originates from electrons in the partially filled 4f orbitals. Accessing this moment electrically by scanning tunneling spectroscopy is hampered by shielding of outerlying orbitals. Here, we show that we can detect the magnetic moment of an individual Ce atom adsorbed on a Cu2N ultrathin film on Cu(100) by using a sensor tip that has its apex functionalized with a Kondo screened spin system. We calibrate the sensor tip by deliberately coupling it to a well characterized Fe atom. Subsequently, we use the splitting of the tip's Kondo resonance when approaching a spectroscopically dark Ce atom to sense its magnetic moment.