Manufacture and characterization of graphene membranes with suspended silicon proof masses for MEMS and NEMS applications
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We demonstrate fully inkjet-printed graphene-gated organic electrochemical transistors (OECTs) on polymeric foil for the enzymatic-based biosensing of glucose. The graphene-gated transistors exhibit better linearity, repeatability, and sensitivity than the ...
The unique mechanical and electrical properties of graphene make it an exciting material for nanoelectromechanical systems (NEMS). NEMS resonators with graphene springs facilitate studies of graphene's fundamental material characteristics and thus enable i ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Single-layer graphene (SLG) membranes, hosting molecular-sieving nanopores have been regarded as the ultimate gas separation membranes, attributing to the fact that they are the thinnest possible molecular barrier. However, the expected attractive performa ...
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene confor ...
Gas separation membranes based on single-layer-graphene are highly attractive because the size of graphene nanopores can be tuned to separate gases by the size-sieving mechanism. A prerequisite for this, the synthesis of high-quality polycrystalline single ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-w ...
Accelerometers are widely used in industrial applications and consumer electronics. We can find them in automotive crash detection or fitness trackers. The majority are based on piezoresistive or capacitive effect which are limited by their large size. Thi ...