Sequential logicIn automata theory, sequential logic is a type of logic circuit whose output depends on the present value of its input signals and on the sequence of past inputs, the input history. This is in contrast to combinational logic, whose output is a function of only the present input. That is, sequential logic has state (memory) while combinational logic does not. Sequential logic is used to construct finite-state machines, a basic building block in all digital circuitry.
Generating functionIn mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
Three-valued logicIn logic, a three-valued logic (also trinary logic, trivalent, ternary, or trilean, sometimes abbreviated 3VL) is any of several many-valued logic systems in which there are three truth values indicating true, false and some third value. This is contrasted with the more commonly known bivalent logics (such as classical sentential or Boolean logic) which provide only for true and false. Emil Leon Post is credited with first introducing additional logical truth degrees in his 1921 theory of elementary propositions.
Parity functionIn Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its role in theoretical investigation of circuit complexity of Boolean functions. The output of the parity function is the parity bit. The -variable parity function is the Boolean function with the property that if and only if the number of ones in the vector is odd.
Falling and rising factorialsIn mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
Adequate equivalence relationIn algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined intersection products. Pierre Samuel formalized the concept of an adequate equivalence relation in 1958. Since then it has become central to theory of motives. For every adequate equivalence relation, one may define the of pure motives with respect to that relation.
Truth functionIn logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value.
Twelvefold wayIn combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number. The idea of the classification is credited to Gian-Carlo Rota, and the name was suggested by Joel Spencer. Let N and X be finite sets. Let and be the cardinality of the sets. Thus N is an n-set, and X is an x-set.