Chains and filler network damage were investigated during single and multiple cycles on a series of vulcanized EPDM containing various filler contents. In both series of experiments, a strain and a filler ratio transitions for damage mechanisms were identified. For low filler content (40 phr), a strain transition occurs with damage initially located in the elastically active rubber network, but subsequently localizes in the vicinity of the filler-filler network. This is ascribed to filler re-aggregation with strain, improving its load-bearing capacity, that may release the immobilized rubber formed by the chains that are occluded and bonded to fillers. During cyclic experiments, such reversible release involving loss of weak physical bonds and chains slippage yields in a progressive cavity closing with cyclic accumulation that prevents further irreversible damage of the elastically active rubber network.
Alain Nussbaumer, Pieter Christian Louter, Jagoda Cupac
Fabio Nobile, Jürg Alexander Schiffmann, Dimitri Maurice Goutaudier