Quantum Monte Carlo approach to the non-equilibrium steady state of open quantum systems
Related publications (55)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Continuum solvation methods can provide an accurate and inexpensive embedding of quantum simulations in liquid or complex dielectric environments. Notwithstanding a long history and manifold applications to isolated systems in open boundary conditions, the ...
The ability to control dynamics of quantum states by optical interference, and subsequent electrical read-out, is crucial for solid state quantum technologies. Ramsey interference has been successfully observed for spins in silicon and nitrogen vacancy cen ...
In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now ...
This thesis is focused on classical and semiclassical approximations of a specific quantum time correlation function, the “quantum fidelity.” Namely, we rigorously study the efficiency of a continuous class of algorithms for the evaluation of its classical ...
We study a driven-dissipative array of coupled nonlinear optical resonators by numerically solving the von Neumann equation for the density matrix. We demonstrate that quantum correlated states of many photons can also be generated in the limit where the n ...
Institute of Physics (IoP) and Deutsche Physikalische Gesellschaft2013
For a class of quantized open chaotic systems satisfying a natural dynamical assumption, we show that the study of the resolvent, and hence of scattering and resonances, can be reduced to the study of a family of open quantum maps, that is of finite dimens ...
We propose an approximate method for evaluating the importance of non-Born–Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy ...
We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criter ...
Due to the Heisenberg uncertainty principle, various classical systems differing only on the scale smaller than Planck's cell correspond to the same quantum system. We use this fact to find a unique semiclassical representation without the Van Vleck determ ...
We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the ...