Publication

Reconfigurable microfluidics: real-time shaping of virtual channels through hydrodynamic forces

David Philipp Taylor
2020
Journal paper
Abstract

To break the current paradigm in microfluidics that directly links device design to functionality, we introduce microfluidic "virtual channels" that can be dynamically shaped in real-time. A virtual channel refers to a flow path within a microfluidic flow cell, guiding an injected reagent along a user-defined trajectory solely by hydrodynamic forces. Virtual channels dynamically reproduce key microfluidic functionality: directed transport of minute volumes of liquid, splitting, merging and mixing of flows. Virtual channels can be formed directly on standard biological substrates, which we demonstrate by sequential immunodetection at arrays of individual reaction sites on a glass slide and by alternating between local and global processing of surface-adherent cell-block sections. This approach is simple, versatile and generic enough to form the basis of a new class of microfluidic techniques.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.