Requirements traceabilityRequirements traceability is a sub-discipline of requirements management within software development and systems engineering. Traceability as a general term is defined by the IEEE Systems and Software Engineering Vocabulary as (1) the degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or primary-subordinate relationship to one another; (2) the identification and documentation of derivation paths (upward) and allocation or flowdown paths (downward) of work products in the work product hierarchy; (3) the degree to which each element in a software development product establishes its reason for existing; and (4) discernible association among two or more logical entities, such as requirements, system elements, verifications, or tasks.
Randomized roundingWithin computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms.
Complete metric spaceIn mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below).
Polynomial-time approximation schemeIn computer science (particularly algorithmics), a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems). A PTAS is an algorithm which takes an instance of an optimization problem and a parameter ε > 0 and produces a solution that is within a factor 1 + ε of being optimal (or 1 – ε for maximization problems). For example, for the Euclidean traveling salesman problem, a PTAS would produce a tour with length at most (1 + ε)L, with L being the length of the shortest tour.
Integer programmingAn integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. Integer programming is NP-complete. In particular, the special case of 0-1 integer linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is one of Karp's 21 NP-complete problems.
Bin packing problemThe bin packing problem is an optimization problem, in which items of different sizes must be packed into a finite number of bins or containers, each of a fixed given capacity, in a way that minimizes the number of bins used. The problem has many applications, such as filling up containers, loading trucks with weight capacity constraints, creating file backups in media, and technology mapping in FPGA semiconductor chip design. Computationally, the problem is NP-hard, and the corresponding decision problem - deciding if items can fit into a specified number of bins - is NP-complete.
Single-linkage clusteringIn statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other. This method tends to produce long thin clusters in which nearby elements of the same cluster have small distances, but elements at opposite ends of a cluster may be much farther from each other than two elements of other clusters.
Pseudometric spaceIn mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space.
Approximation-preserving reductionIn computability theory and computational complexity theory, especially the study of approximation algorithms, an approximation-preserving reduction is an algorithm for transforming one optimization problem into another problem, such that the distance of solutions from optimal is preserved to some degree. Approximation-preserving reductions are a subset of more general reductions in complexity theory; the difference is that approximation-preserving reductions usually make statements on approximation problems or optimization problems, as opposed to decision problems.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.