Publication

Adaptation and Learning Over Networks Under Subspace Constraints & x2014;Part II: Performance Analysis

Abstract

Part & x00A0;I of this paper considered optimization problems over networks where agents have individual objectives to meet, or individual parameter vectors to estimate, subject to subspace constraints that require the objectives across the network to lie in low-dimensional subspaces. Starting from the centralized projected gradient descent, an iterative and distributed solution was proposed that responds to streaming data and employs stochastic approximations in place of actual gradient vectors, which are generally unavailable. We examined the second-order stability of the learning algorithm and we showed that, for small step-sizes , the proposed strategy leads to small estimation errors on the order of . This Part & x00A0;II examines steady-state performance. The results reveal explicitly the influence of the gradient noise, data characteristics, and subspace constraints, on the network performance. The results also show that in the small step-size regime, the iterates generated by the distributed algorithm achieve the centralized steady-state performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.