A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
Frequency-bin qubits get the best of time-bin and dual-rail encodings, but require external modulators and pulse shapers to build arbitrary states. Here, instead, the authors work directly on-chip by controlling the interference of biphoton amplitudes gene ...
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising fro ...
Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution ...
Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to i ...
Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogues of classical bits assuming binary values 0 or 1. They are useful to the extent to which superpositions of 0 and 1 persist despite a noisy environment. The standard prescr ...
The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, r ...
NATURE PORTFOLIO2023
, ,
We propose a variational quantum algorithm to study the real-time dynamics of quantum systems as a ground -state problem. The method is based on the original proposal of Feynman and Kitaev to encode time into a register of auxiliary qubits. We prepare the ...
We report the experimental nondemolition measurement of coherence, predictability and concurrence on a system of two qubits. The quantum circuits proposed by De Melo et al. (Phys Rev Lett 98(25):250501, 2007) are implemented on IBM Q (superconducting circu ...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit oper ...