**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A term structure model for dividends and interest rates

Abstract

Over the last decade, dividends have become a standalone asset class instead of a mere side product of an equity investment. We introduce a framework based on polynomial jump-diffusions to jointly price the term structures of dividends and interest rates. Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. We present an efficient moment based approximation method for option pricing. In a calibration exercise we show that a parsimonious model specification has a good fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 Index dividend futures and dividend options, and Euro Stoxx 50 Index options.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (6)

Loading

Loading

Loading

Related concepts (11)

Interest rate

An interest rate is the amount of interest due per period, as a proportion of the amount lent, deposited, or borrowed (called the principal sum). The total interest on an amount lent or borrowed depe

Price

A price is the (usually not negative) quantity of payment or compensation expected, required, or given by one party to another in return for goods or services. In some situations, the price of pr

Interest rate swap

In finance, an interest rate swap (IRS) is an interest rate derivative (IRD). It involves exchange of interest rates between two parties. In particular it is a "linear" IRD and one of the most liquid

This thesis studies the valuation and hedging of financial derivatives, which is fundamental for trading and risk-management operations in financial institutions. The three chapters in this thesis deal with derivatives whose payoffs are linked to interest rates, equity prices, and dividend payments.
The first chapter introduces a flexible framework based on polynomial jump-diffusions (PJD) to jointly price the term structures of dividends and interest rates. Prices for dividend futures, bonds, and the dividend paying stock are given in closed form. Option prices are approximated efficiently using a moment matching technique based on the principle of maximum entropy. An extensive calibration exercise shows that a parsimonious model specification has a good fit with Euribor interest rate swaps and swaptions, Euro Stoxx 50 index dividend futures and dividend options, and Euro Stoxx 50 index options.
The second chapter revisits the problem of pricing a continuously sampled arithmetic Asian option in the classical Black-Scholes setting. An identity in law links the integrated stock price to a one-dimensional polynomial diffusion, a particular instance of the PJD encountered in the first chapter. The Asian option price is approximated by a series expansion based on polynomials that are orthogonal with respect to the log-normal distribution. All terms in the series are fully explicit and no numerical integration nor any special functions are involved. The moment indeterminacy of the log-normal distribution introduces an asymptotic bias in the series, however numerical experiments show that the bias can safely be ignored in practice.
The last chapter presents a non-parametric method to construct a maximally smooth discount curve from observed market prices of linear interest rate products such as swaps, forward rate agreements, or coupon bonds. The discount curve is given in closed form and only requires basic linear algebra operations. The method is illustrated with several practical examples.

We present recently developed geometric methods for the analysis of finite dimensional term structure models of the interest rates. This includes an extension of the Frobenius theorem for Fr´echet spaces in particular. This approach puts new light on many of the classical models, such as the Hull-White extended Vasicek and Cox-Ingersoll-Ross short rate models. The notion of a finite dimensional realization (FDR) is central for this analysis:we motivate it, classify all generic FDRs and provide some new results for the corresponding factor processes, such as hypoellipticity of its generators and the existence of smooth densities. Furthermore we include finite dimensional external factors, thus admitting a stochastic volatility structure

2004Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis.