**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Efficiently Learning Fourier Sparse Set Functions

Abstract

Learning set functions is a key challenge arising in many domains, ranging from sketching graphs to black-box optimization with discrete parameters. In this paper we consider the problem of efficiently learning set functions that are defined over a ground set of size n and that are sparse (say k-sparse) in the Fourier domain. This is a wide class, that includes graph and hypergraph cut functions, decision trees and more. Our central contribution is the first algorithm that allows learning functions whose Fourier support only contains low degree (say degree d = o(n)) polynomials using O(kd log n) sample complexity and runtime O(kn log(2) k log n log d). This implies that sparse graphs with k edges can, for the first time, be learned from O(k log n) observations of cut values and in linear time in the number of vertices. Our algorithm can also efficiently learn (sums of) decision trees of small depth. The algorithm exploits techniques from the sparse Fourier transform literature and is easily implementable. Lastly, we also develop an efficient robust version of our algorithm and prove l(2)/l(2) approximation guarantees without any statistical assumptions on the noise.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.

Fourier transform

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.

Learning

Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event (e.g. being burned by a hot stove), but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved.