Random extrapolation for primal-dual coordinate descent
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear convergenc ...
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8 (EC8). However, a lack of accuracy of the N2 method in certain conditio ...
In many transportation systems, a mismatch between the associated design and planning decisions and the demand is typically encountered. A tailored system is not only appealing to operators, which could have a better knowledge of their operational costs, b ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the workhorses for training modern automated decision systems. Intriguingly, convergence properties of these methods are not well-established as we move away from the spec ...
We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix of inne ...
In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution and linear convergence with standard ...