Publication

Neural-Network Optimized 1-bit Precoding for Massive MU-MIMO

Abstract

Base station (BS) architectures for massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems are equipped with hundreds of antennas to serve tens of users on the same time-frequency channel. The immense number of BS antennas incurs high system costs, power, and interconnect bandwidth. To circumvent these obstacles, sophisticated MU precoding algorithms that enable the use of 1-bit DACs have been proposed. Many of these precoders feature parameters that are, traditionally, tuned manually to optimize their performance. We propose to use deep-learning tools to automatically tune such 1-bit precoders. Specifically, we optimize the biConvex 1-bit PrecOding (C2PO) algorithm using neural networks. Compared to the original C2PO algorithm, our neural-network optimized (NNO-)C2PO achieves the same error-rate performance at 2x lower complexity. Moreover, by training NNO-C2PO for different channel models, we show that 1-bit precoding can be made robust to vastly changing propagation conditions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.