Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The purpose of this study was to determine the effects of modifying stride length (SL) on knee adduction and flexion moments, two markers of knee loading associated with medial-compartment knee osteoarthritis (OA) progression. This study also tested if SL modifications, in addition to foot progression angle (FP) and step width (SW) modifications, provide solutions in more subjects for reducing knee adduction moment (KAM) without increasing knee flexion moment (KFM), potentially protecting the joint. Fourteen healthy subjects (six female) were enrolled in this preliminary study. Walking trials were collected first without instructions, and then following foot placement instructions for 50 combinations of SL, FP, and SW modifications. Repeated measures analysis of variance was used to detect group-average effects of footprint modifications on maximum KAM and KFM and on KAM impulse. Subject-specific dose-responses between footprint modifications and kinetics changes were modeled with linear regressions, and the models were used to identify modification solutions, per subject, for various kinetics change conditions. Shorter SL significantly decreased the three kinetics measures (p
,