GlycanThe terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically".cite book | title=IUPAC Gold Book - Glycans | chapter-url= doi=10.1351/goldbook.G02645| chapter=Glycans| year=2009| isbn=978-0-9678550-9-7 However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide.
GlycomeThe glycome is the entire complement of sugars, whether free or present in more complex molecules, of an organism. An alternative definition is the entirety of carbohydrates in a cell. The glycome may in fact be one of the most complex entities in nature. "Glycomics, analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology.
GlycosylationGlycosylation is the reaction in which a carbohydrate (or 'glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not always in chemistry), glycosylation usually refers to an enzyme-catalysed reaction, whereas glycation (also 'non-enzymatic glycation' and 'non-enzymatic glycosylation') may refer to a non-enzymatic reaction. Glycosylation is a form of co-translational and post-translational modification.
GlycomicsGlycomics is the comprehensive study of glycomes (the entire complement of sugars, whether free or present in more complex molecules of an organism), including genetic, physiologic, pathologic, and other aspects. Glycomics "is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology. The term glycomics is derived from the chemical prefix for sweetness or a sugar, "glyco-", and was formed to follow the omics naming convention established by genomics (which deals with genes) and proteomics (which deals with proteins).
Host cell proteinHost cell proteins (HCPs) are process-related protein impurities that are produced by the host organism during biotherapeutic manufacturing and production. During the purification process, a majority of produced HCPs are removed from the final product (>99% of impurities removed). However, residual HCPs still remain in the final distributed pharmaceutical drug. Examples of HCPs that may remain in the desired pharmaceutical product include: monoclonal antibodies (mAbs), antibody-drug-conjugates (ADCs), therapeutic proteins, vaccines, and other protein-based biopharmaceuticals.
GlycoproteinGlycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated. In proteins that have segments extending extracellularly, the extracellular segments are also often glycosylated. Glycoproteins are also often important integral membrane proteins, where they play a role in cell–cell interactions.
Fusion proteinFusion proteins or chimeric (kī-ˈmir-ik) proteins (literally, made of parts from different sources) are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this fusion gene results in a single or multiple polypeptides with functional properties derived from each of the original proteins. Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics.
N-linked glycosylationN-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein), in a process called N-glycosylation, studied in biochemistry. The resulting protein is called an N-linked glycan, or simply an N-glycan. This type of linkage is important for both the structure and function of many eukaryotic proteins.
BiopharmaceuticalA biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues.
GlycobiologyDefined in the narrowest sense, glycobiology is the study of the structure, biosynthesis, and biology of saccharides (sugar chains or glycans) that are widely distributed in nature. Sugars or saccharides are essential components of all living things and aspects of the various roles they play in biology are researched in various medical, biochemical and biotechnological fields. According to Oxford English Dictionary the specific term glycobiology was coined in 1988 by Prof.