Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The appearance of DNA in the cytosol is perceived as a danger signal that stimulates potent immune responses through cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS). How cells regulate the activity of cGAS toward self-DNA and guard against potentially damaging autoinflammatory responses is a fundamental biological question. Here, we identify barrier-to-autointegration factor 1 (BAF) as a natural opponent of cGAS activity on genomic self-DNA. We show that BAF dynamically outcompetes cGAS for DNA binding, hence prohibiting the formation of DNA-cGAS complexes that are essential for enzymatic activity. Upon acute loss of nuclear membrane integrity, BAF is necessary to restrict cGAS activity on exposed DNA. Our observations reveal a safeguard mechanism, distinct from physical separation, by which cells protect themselves against aberrant immune responses toward genomic DNA.