Waiting on the Fringe: cell autonomy and signaling delays in segmentation clocks
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, th ...
Improved genetic tools are required to identify new drug targets in Mycobacterium tuberculosis. To this aim, genetic approaches, targeting either transcription and/or protein degradation, have been developed to appraise gene essentiality and to test the im ...
In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a "segmentation clock". This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in ...
Bacterial cells behave as individuals despite being genetically identical and subject to the same environment. Although the underlying mechanisms of cellular individuality are not well understood, temporal variation of gene expression and protein levels in ...
Juxtacrine or contact-dependent signaling is a major form of cell communication in multicellular organisms. The involved cell-cell and cell-extracellular-matrix (ECM) interactions are crucial for the organization and maintenance of tissue architecture and ...
Amer Chemical Soc2015
Since stem cells have the unique ability to produce more of themselves (i.e. to "self-renew") and to generate specialized tissue cells, they are an ideal source of cells for regenerative medicine and in vitro tissue models. In order to fully exploit this p ...
While many perceive mammalian cell culture-based manufacturing for biopharmaceuticals an established technology, numerous open questions remain to be solved. Genetic diversity and mutation rates in CHO cells have been underestimated since progeny of a clon ...
By live-cell imaging of biological samples dynamic cellular processes can be resolved. Fluorescence microscopy (FM) and atomic force microscopy (AFM) are both capable of imaging live cells. By combining these techniques structural as well as functional inf ...
Fluorescence and bioluminescence time-lapse imaging allows to investigate a vast range of cellular processes at single-cell or even subcellular resolution. In particular, time-lapse imaging can provide uniquely detailed information on the fine kinetics of ...
Chinese hamster ovary (CHO) cells are a source of multi-ton quantities of protein pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of genetic and phenotypic diversity. As is known for any biological system, this divers ...