Publication

The probability of intransitivity in dice and close elections

Jan Hazla
2020
Journal paper
Abstract

We study the phenomenon of intransitivity in models of dice and voting. First, we follow a recent thread of research for n-sided dice with pairwise ordering induced by the probability, relative to 1/2, that a throw from one die is higher than the other. We build on a recent result of Polymath showing that three dice with i.i.d. faces drawn from the uniform distribution on {1,…,n} and conditioned on the average of faces equal to (n+1)/2 are intransitive with asymptotic probability 1/4. We show that if dice faces are drawn from a non-uniform continuous mean zero distribution conditioned on the average of faces equal to 0, then three dice are transitive with high probability. We also extend our results to stationary Gaussian dice, whose faces, for example, can be the fractional Brownian increments with Hurst index H∈(0,1). Second, we pose an analogous model in the context of Condorcet voting. We consider n voters who rank k alternatives independently and uniformly at random. The winner between each two alternatives is decided by a majority vote based on the preferences. We show that in this model, if all pairwise elections are close to tied, then the asymptotic probability of obtaining any tournament on the k alternatives is equal to 2−k(k−1)/2, which markedly differs from known results in the model without conditioning. We also explore the Condorcet voting model where methods other than simple majority are used for pairwise elections. We investigate some natural definitions of “close to tied” for general functions and exhibit an example where the distribution over tournaments is not uniform under those definitions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.