Oxygen evolution reaction catalyzed by first-row transition metal oxides: stability and mechanism
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Water oxidation is the key kinetic bottleneck of photoelectrochemical devices for fuel synthesis. Despite advances in the identification of intermediates, elucidating the catalytic mechanism of this multi-redox reaction on metal-oxide photoanodes remains a ...
Photoelectrochemical water splitting is a promising source of clean, renewable fuel in the form of hydrogen. Despite extensive research endeavors, the widespread adoption of this technology is impeded due to suboptimal catalysts for the oxygen evolution re ...
Electrocatalysts play an important part on the route towards environmental friendly energy sources. They support modern technologies like fuel cells to move further away from the utilization of fossil fuels and the resulting CO2 emission into our atmospher ...
Photosynthetic water oxidation is catalyzed by the Mn4Ca cluster in photosystem II (PSII). The nearby redox-active tyrosine (Y-Z) serves as a direct electron acceptor of the Mn4Ca cluster and it forms a low-barrier H-bond (LBHB) with a neighboring histidin ...
Anthropogenic carbon dioxide emissions leading to climate change require to use of renewable carbon sources such as CO2 and biomass which differ from fossil resources by having a higher number of oxygen atoms. Therefore, catalytic C-O bond cleavage will pl ...
The activation of small molecule is a topic of high current interest. A variety of homogeneous end heterogeneous catalysts have been studied to be able to promote chemical transformation of industrial relevance under mild condition and therefore decrease t ...
The general scope of this thesis lies in the application of MOFs in photocatalysis. MOFs demonstrate inherent properties â such as high porosity, tunable optoelectronic and catalytic properties, which render them promising candidates for photocatalysis. ...
Metal oxide deposition is an emerging synthetic technique for designing heterogeneous catalysts. Depositing a nanoscale overcoat of metal oxide on heterogeneous catalysts can modify their structural and chemical characteristics. Many deposition approaches, ...
The bifunctional mechanism for the oxygen evolution reaction (OER) involving two distinct reaction sites is studied through the computational hydrogen electrode method for a set of catalyst materials including rutile TiO2(110), anatase TiO2(101), SnO2(110) ...
Multimetal oxyhydroxides have recently been reported that outperform noble metal catalysts for oxygen evolution reaction (OER). In such 3d-metal-based catalysts, the oxidation cycle of 3dmetals has been posited to act as the OER thermodynamic-limiting proc ...